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Abstract. A summary of detailed measurements of the field and temperature dependence of the
ac susceptibility, magnetization and the longitudinal and transverse magnetoresistivities of ceramic
La0.67Pb0.33MnO3 is presented. Detailed analysis of the magnetic data provides an estimate of
340.5±0.5 K for the paramagnetic to ferromagnetic transition temperatureTc, with the data closest
to the critical point yieldingγ = 1.39±0.06 (from the temperature dependence of the susceptibility
along the crossover line),β = 0.41±0.02 (from the field induced variation of the temperature of the
same line) andδ = 4.20± 0.15 (from the field dependence of the critical isotherm). Nevertheless
the presence of disorder—a variance in the distribution of spin–spin coupling strengths—means
that Heisenberg model (asymptotic) exponents cannot be excluded; the universality class for this
system cannot therefore be definitively identified.

The transport data yieldTc = 339.6±0.4 K, and while the isotropic magnetoresistance peaks
nearTc, as expected, the magnitude of the spontaneous resistive anisotropy (SRA) (the difference
between the longitudinal and transverse magnetoresistance extrapolated to zero induction) increases
linearly with decreasing temperature belowTc, peaks near 30 K and then falls to a smaller value
(−0.2 ± 0.03%) in the liquid helium range. While this latter value is in reasonable agreement
with itinerant model predictions, the temperature variation in the SRA above 30 K is more
convincingly reproduced by a localized model. Furthermore, the mechanisms controlling the
isotropic magnetoresistance and the SRA in this system appear to be different.

1. Introduction

Much recent research effort has been directed at understanding the magnetic and transport
properties of doped lanthanum manganites, La1−xAxMnO3 (A = Ca, Sr, Ba, Pb etc), and
the interplay between magnetic order and the conduction process in them [1]. This interest
has both a fundamental and an applied perspective. In terms of the latter these systems may
have several potential applications; in particular nearx ∼ 0.3 these systems behave as half-
metallic ferromagnets in which the conduction process is accomplished within a completely
spin polarized band [2], thus raising the possibility of fabricating devices based on spin—rather
than charge—transport. These perovskites also provide interesting possibilities for studying the
fundamental behaviour of strongly correlated electronic systems. While the parent compound
(x = 0) is a layered antiferromagnetic insulator, the substitutional replacement of trivalent
La ions by divalent alkaline earths of the type indicated above produces an inhomogeneous
distribution of mixed valent Mn3+–Mn4+ ions to maintain charge neutrality and a modification
of both the magnetic and the transport properties. Current models for the transport properties of
the substituted systems suggest that forx & 0.1 the eg(03)electrons at trivalent Mn sites acquire
mobility (presumably due to the emergence of an eg–O(2pσ ) band near this composition)
resulting in metallic features (dρ/dT > 0) at low [1] temperature, although a few cases of
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metallic conduction at high temperatures have also been observed [3]. Of particular importance
in the transport behaviour is the presence of double exchange [4], the principal consequence
of which is to inhibit the hopping of electrons between Mn near-neighbour mixed valent sites
when the associated quasi-localized t2g(05) core spins are not parallel. The establishment of
ferromagnetic order thus enhances the conductivity substantially (the kinetic energy change
of the carriers being stabilized by the ordering of the core spins), with the field dependence
of the ordering process leading to a colossal magnetoresistance (CMR) near the ordering
temperatureTc.

Much recent work on these doped perovskites has concentrated on Ca substitution.
This has resulted in the publication of a comprehensive phase diagram for this system [5],
which exhibits rich structure as a function of both Ca compositionx and temperatureT .
Indeed, the term ‘optimal doping’ was first applied to this system, a consequence of the
ferromagnetic ordering temperatureTc peaking (at about 250 K) close tox ' 1

3. Here we
report measurements on a ceramic sample doped with Pb atx ' 1

3; these measurements include
field-and temperature-dependent magnetic and transport measurements as well as anisotropic
magnetoresistance studies. The results of such measurements are discussed below.

2. Experimental details

Samples of La0.67Pb0.33MnO3 (nominal) were prepared by standard ceramic techniques.
Stoichiometric quantities of La2O3 (ultra-pure), PbO and MnO2 were mixed for 24 hours
by ball milling in acetone. The dried powder was subsequently pressed into pellet form and
heated to 800◦C for 24 hours; this was repeated three times following intermediate 6 hour
periods of ball milling. The powder was then mixed with a binder, pressed into pellet form and
annealed at 1100◦C in air for 72 hours, followed by 20 hours at 1000◦C. After removal from
the furnace—effectively a quench in air—samples were treated finally for 72 hours at 600◦C.
Room temperature x-ray diffraction studies of the final sample revealed a single phase, nearly
cubic structure witha = 3.8927 Å and a slight rhombohedral distortion,β = 90.30◦. These
structural features correlate well with the relatively high paramagnetic to ferromagnetic and
metal–insulator transition temperatures (reported below) for this system as shown by a recent
bond-valence analysis of such effects in the manganese perovskites [6].

Transport and magnetic measurements were performed on the same specimen with
approximate dimensions(6 × 1 × 1) mm3. Ac susceptibility and dc magnetization data
were acquired as a function of both field and temperature using a Quantum Design PPMS
model 6000 magnetometer/susceptometer. Resistance and magnetoresistance measurements
were carried out using a conventional four-probe method using both standard dc (77–380 K)
and a previously described low frequency (37 Hz) ac technique [7] (1.7–30 K); in both methods
the measuring current flowed along the largest sample dimension.

3. Results and discussion

3.1. Zero-field resistivity

Figure 1 reproduces the temperature dependence of the zero-field resistivityρ(T ) of this
polycrystalline ceramic specimen between 1.7 and 380 K. These data are in good overall
agreement with existing measurements on this system [8], so little comment on them is
necessary. This specimen displays semiconducting behaviour (dρ/dT < 0) above 350 K,
the latter being the temperature of the resistivity maximum, below which an abrupt transition
to metallic-like transport (dρ/dT > 0) occurs. The weak, broad ‘shoulder’ between 150 and
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Figure 1. The zero-field resistivityρ (inµ�m) plotted against temperature (in K); the inset shows
the derivative dρ/dT (in arbitrary units) in the vicinity of the metal–insulator transition.

300 K is attributable to sample granularity [9, 10]. The insert in this figure shows the derivative
of these data in the temperature range 330–345 K, an interval that brackets the onset of the
metal–insulator transition. This derivative can be seen to peak at 339.6± 0.4 K, a feature
discussed in more detail below.

3.2. Magnetization and ac susceptibility

The inset in figure 2 shows the zero-field ac susceptibilityχ0(T ) (measured at 2.4 kHz with
a driving field amplitude of 3µT) of the same specimen;χ0(T ) increases rapidly as the
temperature is lowered and the system passes through the metal–insulator transition. The
zero-field susceptibility exhibits a maximum near 320 K (the Hopkinson peak [11]) before
decreasing slowly with further decrease in temperature.

The detailed behaviour of this magnetic response is presented in the main body of this
figure. Here the effects of static biasing fields of 30–100 mT superimposed on the ac field
are shown (both ac and dc fields being applied parallel to the largest sample dimension). As
has been reported in a variety of other systems, both metallic and semiconducting [12], such
static fields suppress the principal maximum in both amplitude and temperature, enabling the
critical peaks evident in the main body of this figure to be resolved. These critical (secondary)
maxima decrease in amplitude and move upward in temperature as the static biasing field
Ha increases, a behaviour which—as discussed in detail previously [12]—is characteristic of
critical fluctuations in the vicinity of a continuous magnetic phase transition. The result that
the temperaturesTm of these critical maxima move upward, while their amplitudeχ(H, Tm)
decreases with increasing fieldH , is consistent not only with the general formalism based on
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Figure 2. The temperature dependence of the ac susceptibilityχ (in J T−2 kg−1) plotted against
temperature (in K) in the vicinity of the paramagnetic to ferromagnetic transition. The inset shows
the zero-field ac susceptibility while the data in the main figure were taken in static biasing fields
µ0Ha of between 30 and 100 mT increasing (from top to bottom) in steps of 10 mT. The dashed
line designates the cross-over line (see text).

the static scaling law description of such a transition [13], but also with detailed numerical
solution of a particular model—the ferromagnetic phase of a Sherrington–Kirkpatrick-like
(S–K) model [14] (within the latter this peak evolution is consistent—as expected—with
mean field exponent values). The fluctuation–dissipation theorem provides a qualitative
understanding of the emergence of such peaks in finite field [15], and also indicates that
the locus of these critical maxima delineates the location of the ‘cross-over’ line in the (H–T )
plane, above which the susceptibility is dominated by thermal fluctuation whereas below this
line it is field dominated.

A quantitative analysis of these data is based on the conventional static scaling law equation
of state which expresses the (reduced) magnetizationm in terms of the usual linear scaling
fields h ∼ Hi/Tc and t = |T − Tc|/Tc, whereHi is the internal field andTc the critical
(ferromagnetic) temperature, i.e.

m = tβF (h/tγ+β). (1)

Alternatively

χ(h, t) = ∂m

∂h
= t−γG

(
h

tγ+β

)
= h1−1/δH

(
h

tγ+β

)
(2)

in whichH(X) = Xγ/γ+βG(X), whereG is the derivative of the (unknown) scaling function
F , and the Widom equalityγ = β(δ − 1) is assumed to hold. From this latter form in
equation (2) it can be seen that susceptibility measurements carried out in fixed field (for
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Figure 3. The magnetizationM (in A m−2 kg−1) measured in low applied fieldsµ0Ha (in mT)
close to the ferromagnetic transition temperature. Here the applied field is parallel to the largest
sample dimension with the solid line estimating the slope of the ‘shearing’ curve.

which the prefactorh1−1/δ is constant) as a function of temperature map out the dependence of
H(X) on its argumentX (in which the temperature appears in the denominator). Furthermore
the assertion of scaling theory thatF—and henceH andG—is a universal function of this
argument means that any feature evident inH(X), such as the maxima shown in figure 2, will
appear at the same value (Xc) of this argument. This leads directly to

h

t
γ+β
m

= XC viz. tm = (Tm − Tc)/Tc ∝ H 1/(γ+β)
i (3)

whereTm is the temperature of the maxima evident in figure 2. In addition, as the argument
X = Xc is a constant at these maxima, so are the functionsH(Xc) andG(Xc) themselves,
when, from the initial form in equation (2)

χ(h, tm) ∝ t−γm . (4)

Thus thepeaksusceptibility displays thesamedependence on temperature as does the zero-
field susceptibility immediately aboveTc. These features are exploited below as they enable
various critical exponents to be deduceddirectly from these maxima, thus contrasting with
estimates forγ andβ, from the magnetization above and belowTc respectively, which usually
involve extrapolation to zero field to avoid complications associated with contributions from the
regular/non-critical components to the low field response. The approach adopted here avoids
such extrapolations (and the uncertainties inherent in them) as the following demonstrates.
Analysis of these data begins by plotting the peak temperaturesTm from figure 2 against
H

1/(γ+β)
i ; the internal field (Hi = Ha − NM, in the usual notation) at each temperature is

estimated from the measured magnetization and the slope (N−1) of the low field (shearing)
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Figure 4. The ac susceptibility peak temperatureTm (in K)—taken from data similar to those shown
in figure 2—plotted against (µ0Hi (in T))1(γ+β) whereHi is the internal field and Heisenberg
model exponents are adopted ((γ + β)−1 = 0.57). The intercept of the straight line drawn yields
an estimatedTc.

curve, figure 3. Such plots have been constructed using a wide range of exponent values; the
most consistent ‘fits’—discussed below—are obtained with values of (γ + β) close to those
predicted by the isotropic, nearest-neighbour three-dimensional Heisenberg model [16],viz.
γ +β = 1.75, which are used in figure 4. The intercept of the straight line drawn in this figure
(resulting from the fitting of the first six points, i.e. those closest toTc, which is appropriate
considering the asymptotic nature of the scaling law (h → 0, t → 0)), provides an estimate
for Tc of 340.5 ± 0.5 K. There are deviations away from the single power-law behaviour
summarized in equation (3) evident at higher fields, and a possible origin for such deviations
is discussed later. At this point it is important to point out that the behaviour presented in
figure 4, in particular theTc estimate, is essentially independent of the exponent values chosen
(mean field, 3D Heisenberg etc). This estimate for the ferromagnetic ordering temperature
from the magnetic data is in very good agreement with that deduced above from the transport
measurements (339.6± 0.4 K), particularly since these data sets were acquired in different
cryostats incorporating different thermometry (the absolute accuracy of which is typically
0.5–1% in either system). The estimate ofTc = 340.5 K is then used in constructing other
scaling plots from the magnetic data, as detailed below.

The susceptibility peak amplitudes from figure 2 (corrected for background and
demagnetizing effects) are plotted against the reduced temperaturet on a double logarithmic
scale in figure 5. The straight line drawn in this figure—a best fit to the 11 points
(those approaching the asymptotic limit most closely)—verifies the power-law prediction of
equation (4), with the slope of this line yieldingγ = 1.39. This value is in close agreement
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Figure 5. The field-dependent ac susceptibility peak amplitudeχm (in J T−2 kg−1)—taken from
data similar to those shown in figure 2—and plotted against the reduced peak temperaturetm on a
double logarithmic scale. The slope of the line drawn not only confirms the power-law prediction of
equation (4) but also yieldsγ = 1.39. The inset shows the behaviour of the effective Kouvel–Fisher
(zero-field) susceptibility exponentγ ∗(t) (see text).

with the three-dimensional Heisenberg model prediction of 1.386, a result that provided a
principal impetus for investigating overall consistency with this latter model exponent values.
With the uncertainties evident in figure 5, the range of slopes that will fit these data yields

γ = 1.39± 0.06.

Figure 6 assesses the applicability of Heisenberg model exponents in describing the field
induced increase in the temperature of the crossover line,viz. a double logarithmic plot of
the reduced peak temperaturetm from figure 2 against the internal fieldHi . An unrestricted
best fit to the initial five points in this figure yields(γ + β)−1 = 0.54, somewhat lower than
the Heisenberg model value of 0.57 actually shown in this figure. The latter provides an
acceptable fit, although deviations are clearly evident at higher field (so that fitting the entire
data set would clearly reduce the estimate for(γ + β)−1). Having decided to investigate
the overall applicability of Heisenberg model exponents, it is appropriate to discuss possible
causes of deviations from these model values evident in figure 6 at higher fields. Indeed, close
examination of figure 5 indicates an increase in slope (and hence in the effective susceptibility
γ ∗(t) defined below) beyondt ' 5×10−3, while the data in figure 6 display marked (concave)
curvature abovetm ∼ 10−2 consistent with an increase in the sum of the corresponding effective
exponents(γ ∗+β∗) beyond that point.Effectiveexponent values defined, for example, through
the Kouvel–Fisher expressions [17].

γ ∗(t) = d(ln χ(0, t))/d ln(t) β∗(t) = d(lnm(0, t))/d ln(t)
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Figure 6. The field-dependent ac susceptibility reduced peak temperaturetm plotted against the
internal fieldµ0Hi (in mT) on a double logarithmic scale. The straight line drawn corresponds to
the power-law prediction of equation (3) with Heisenberg model exponents.

which change with increasing temperature or field are an established feature of coupled spin
systems in which the spin–spin (exchange) coupling constants displays some variance about
a mean value. The effective Kouvel–Fisher susceptibility exponentγ ∗(t) derived from the
present zero-field data is shown in the inset in figure 5. In this regard, the consensus emerging
from previous investigations of metallic systems with such characteristics [12, 18] indicates that
the ‘disorder’—measured typically by the variance in the distribution of coupling strengths—
is an irrelevant scaling fieldat the critical point (t = 0, h = 0), so that the asymptotic
exponent values are unchanged from the ‘pure’ system in agreement with the Harris criterion
(as the specific heat exponenta < 0). The ‘disorder’ does however cause the effective
exponent values to change as field and/or temperature is varied away from the critical point
[12, 18]. Various model calculations of such effects have been performed, and figures 7 and
8 reproduce the temperature dependence ofβ∗(h) and δ∗(h) in the S–K model mentioned
previously [19]. The initial increase inβ∗(h) from its asymptotic value (β0) shown in figure 7 is
qualitatively consistent with the behaviour of the data reproduced in figure 6; such calculations
thus reproduce correctly thetrendsobserved experimentally, although the mean-field nature
of the S–K model cannot reproduce the correct asymptoticvaluefor β0 (0.5 in the S–K model,
cf 0.365 in the Heisenberg model). It should also be noted that these calculations utilize a
Gaussian distribution of exchange coupling constants (withη = J0/J being the ratio of the
first to second moment of the distribution), whereas that characterizing the present system
is probably bimodal: a dominant ferromagnetic component arising from double exchange
between Mn3+ and Mn4+ ions and an antiferromagnetic component resulting from Mn3+–Mn3+

interactions (so called t2g–O(2pπ )–t2g superexchange) prevalent in the undoped host, each
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Figure 7. The ratio of the effective Kouvel–Fisher exponentβ∗ to its asymptotic valueβ0
calculated from the ferromagnetic phase of an S–K-like model (see text), plotted against the reduced
susceptibility peak temperaturetm. The symbols correspond to () η = 1.27, (N) η = 2, (•)
η = ∞.

weighted appropriately by the proportion of Mn3+ and Mn4+ ions present, i.e. the doping
level. Available calculations [20] suggest that differences in the distribution profiles should
not influence significantly the trends described above. The mean-field nature of the S–K model,
in whichγ (T ) = γ ∗(T ), cannot reproduce the trends evident in the inset in figure 5 forγ ∗(T ),
although other approaches incorporating exchange coupling disorder have been invoked [21].
The final comparison involves the exponentδ. Figure 9 reproduces magnetization data acquired
along the critical isotherm and plotted on a double logarithmic scale against the internal field.
The straight line drawn confirms the power-law prediction of equation (1) for this isotherm,
viz.

m ∝ H 1/δ
i (5)

with the slope of the line drawn corresponding toδ = 4.2(±0.15) for 20 6 Hi 6 103 mT.
The latter is well below the three-dimensional Heisenberg model value of 4.80.

The analysis of the magnetic data given above thus admits the following alternatives.
A best fit to data closest to the critical point (t = 0,h = 0) yields

γ = 1.39± 0.06 β = 0.41± 0.02 δ = 4.2± 0.15.
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Figure 8. The ratio of the effective exponentδ∗ to its asymptotic valueδ0 calculated from the
local slope of the critical isotherm at the ferromagnetic boundary in an S–K-like model (see text);
symbols as in figure 7.

These estimates satisfy the Widom equality

γ = β(δ − 1)

within experimental uncertainty (δ− 1− γ /β = 0.2± 0.27); however they do not agree with
the predictions of any specific model. Nevertheless the estimates forδ andβ agree, again
within the listed uncertainty, with the corresponding estimates reported recently [22] for single
crystal La0.7Sr0.3MnO3 (δ = 4.25±0.2,β = 0.37±0.04), although the estimate forγ in that
system (1.22± 0.03) is lower than that found here.

Alternatively arguments incorporating the effects of exchange bond disorder—which,
as outlined above, appear to suggest that theasymptoticestimates forγ andβ in the present
system might be compatible with Heisenberg model predictions—could be extended toδ value
estimates. Specifically, as depicted in figure 8, the effects of ‘disorder’ depress the estimate for
this exponent below its true asymptotic value for data acquired away from the critical point,
h = 0. A reduction in the effectiveδ∗ value of some 13% from its (assumed) asymptotic
value would reproduce the measured value, and while this reduction is considerable the model
calculations reproduced in figure 8 show that this is achievable forη ∼ 1.3 in the fields utilized
here (h = gµBHi/kBTc). It is, furthermore, not inconsistent with the variation displayed by
the other effective exponents.
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Figure 9. The magnetizationM (in A m−2 kg−1) measured along the critical isotherm, plotted
against the internal fieldµ0Hi (in mT) on a double logarithmic scale. The slope of the line drawn
yieldsδ = 4.2.

In summary, both of the above suggestions must remain as possible explanations of the
magnetic response of this Pb doped manganite. This situation could be resolved, in principle, by
measurements closer to the critical point. Such measurements are, however, precluded by the
presence of a significant regular (i.e. noncritical) contribution to the response which obscures
the emerging critical peak structure (and hence the critical response) as is clearly apparent
in figure 2. This latter behaviour is a somewhat ubiquitous feature of doped perovskites. In
many non-perovskite systems previously studied, the presence of such a regular component,
which is not driven to (technical) saturation in relatively low fields, has been associated with an
anisotropy/coercivity arising from single ion spin–orbit coupling [12, 23]. The coercivity of the
present sample—obtained from butterfly loop measurements (χ(Ha, T ) againstHa at various
fixed temperatures)—is shown as a function of temperature in figure 10.Hc(T ) collapses
to zero nearTc ' 340 K, as shown in the inset in this figure, and saturates at a value of
about 1.6 mT below 250 K, somewhat lower than that reported recently for similarly prepared
ceramic La0.67Ca0.33MnO3 bulk samples [24], and roughly an order of magnitude lower than
LCMO films [25]. It would be tempting to attribute this coercivity to the presence of Mn3+

ions (Mn4+ is not a Jahn–Teller ion), a corollary of which would be that this system should
also display a spontaneous resistive anisotropy, already reported for the other divalent dopants,
and which is considered in the following section.

3.3. Magnetoresistance and the spontaneous resistive anisotropy (SRA)

Having briefly discussed the zero-field transport data (figure 1) earlier, the detailed behaviour
of the effects of an external magnetic field is now presented. Figure 11 displays the longitudinal
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Figure 10. The coercive fieldµ0Hc (in mT), estimated from butterfly-loop measurements, plotted
against temperature (in K). The inset shows the behaviour close to the ferromagnetic transition
temperatureTc.

ρ‖ (Ha parallel to the measuring current) and the transverseρ⊥ magnetoresistance at 4.2 K
in fields up to 3 T. In both orientations the low field magnetoresistance (µ0Ha < 0.5 T)
falls sharply, as shown in the inset, an effect often attributed to grain boundary effects [25],
with the large difference evident between the two orientations originating principally from
demagnetizing field effects (estimated to be about60.2 T), as discussed below). At higher
fields (&1 T) there is a much slower, essentially linear decrease inρ(Ha) with increasing
applied fieldHa.

The spontaneous resistive anisotropy (SRA) is usually defined by the ratio [26]

1ρ

ρ0
=
[
ρ‖(B)− ρ⊥(B)

ρ0

]
B→0

(6)

which characterizes the difference between the longitudinal and transverse magnetoresistance
of a (technically) single domain ferromagnet extrapolated to zero induction, roughly the
transport equivalent of the spontaneous magnetization. The extrapolation implicit in
equation (6) is usually performed from a field region sufficiently high to (technically) saturate
the sample; by contrast the low field region of the curves shown in the inset in figure 11
depend on the prevailing domain structure which is, in turn, history dependent and hence not
well defined [27]. The extrapolations, shown by the dashed lines in this figure, are fits to the
(technically saturated) data beyondµ0Ha ∼ 1 T where a simple linear, essentially parallel,
fit reproduces the data for both orientations very well. These extrapolations are extended
to B = 0, whereB = µ0Ha + M(µ0 − N) in the usual notation and the demagnetizing
factors are found from the corresponding ‘shearing’ curves. For the two orientations, the
difference in these latter factors results in the conditionB = 0 being attained in applied
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Figure 11. The resistivityρ (in µ� m), measured in the transverse (⊥) and longitudinal (‖)
configurations at 4.2 K, plotted against the applied fieldµ0Ha (in T). The dashed lines are linear
extrapolations from the high field region. The inset shows the low field behaviour in more detail.

fieldsµ0Ha differing by the∼0.2 T mentioned above. The value estimated for the SRA at
4.2 K using this approach is−0.2(1) ± 0.03%. Since a non-vanishing SRA requires both a
polarizing field and spin–orbit coupling at scattering sites in either an itinerant [27, 28] or a
localized model approach [27, 29], this result is qualitatively consistent with the presence
of Mn3+ ions mentioned above. Both the sign and magnitude of this effect in the Pb
substituted system is similar to that reported for expitaxial films of La0.67Sr0.33MnO3 films
at the same temperature [30] and for post-annealed films of La0.7Ca0.3MnO3 on SrTiO3 at
higher temperatures [25].

Before discussing both the size and the temperature dependence of the SRA in this
substituted perovskite, two further comments on the behaviour evident in figure 11 are
appropriate. First, in metallic ferromagnets the change inρ⊥ or ρ‖ with applied field beyond
technical saturation is usually attributed to Lorentz force considerations resulting in cyclotron
curvature effects. The latter causesρ‖ andρ⊥ to increase with field whereas the opposite
trend is evident here; furthermore cyclotron curvatures effects are generally very small in
the present field range for residual resistivities greater than 10−2–10−1 µ� m [26]. The
decrease in the magnetoresistivities beyondµ0Ha ∼ 1 T evident in figure 11 probably arise
from some degree of non-collinearity in the spin system, as confirmed qualitatively by the
corresponding magnetization data (figure 12). Quantitatively however, the fractional change
in the magnetoresistance between 1 and 3 T is nearly an order of magnitude larger than
the corresponding magnetization change. Second, the low field magnetoresistive behaviour
reproduced in the inset in figure 11 indicates that while the behaviour evident in this
regime indicates a clear anisotropy in this response, a quantitative characterization of effects
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Figure 12. The magnetizationM (in A m−2 kg−1) measured at 4.2 K, plotted against the applied
fieldµ0Ha (in T) with the latter applied parallel to the largest sample dimension.

from such data might be misleading since they can appear exaggerated by demagnetizing
effects.

Figures 13 and 14 show selected curves of the magnetoresistivities at a variety of
temperatures between 10 and 330 K, from which the SRA has been estimated in the
manner described above. These data also indicate a monotonic decrease in thelow field
magnetoresistance with increasing temperature, a feature referred to later. Figure 15
summarizes the temperature dependence of the SRA so obtained.

Such data have been interpreted using two complementary models both relying on the
existence of spin–orbit coupling and a polarizing field at scattering sites, as mentioned above.
One is based on an itinerant picture—the two-current model—which has been utilized widely
to describe extensive sets of measurements on dilute ferromagnetic alloys based on transition
metal hosts [26, 27, 28, 31]; the second uses the opposite extreme—a localized picture—and
has been used principally to interpret the SRA induced in paramagnetic systems such asAuHo
by externally applied polarizing fields [29].

Both models have been discussed in detail previously; consequently their main predictions
alone will be presented here. Indeed, a recent calculation of the SRA in an itinerant model
approach incorporating conduction within a single spin-polarized e↑

g sub-band generally
believed to apply to the manganese perovskites yielded [25]

1ρ

ρ0
= −3

2

[
λ2

(Hex −1CF )2
− λ2

12
CF

]
(7)

whereλ is the spin–orbit coupling constant,Hex the exchange field and1CF the crystal
field splitting; with the latter estimated at 2 and 1.5 eV respectively andλ ' 4× 10−2 eV,
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Figure 13. As in figure 11 for temperatures of 30 and 170 K.

the predicted value for the SRA is−0.85% [25]. The low temperature data displayed
in figure 15 are in general agreement with this estimate—in both sign and magnitude
(SRA= −0.2(1)± 0.03% at 4.2 K, essentially the same as at 1.5 K, but climbing abruptly to
−1.3± 0.1% near 30 K).

Next, the temperature dependence of the SRA is addressed. Here thelow temperature
anisotropy is an intraband effect, that is, it arises from the diagonal term (λLzSz) in the spin–
orbit interaction (λ ELES = λLzSz + λ/2(L+S− + L−S+)). The off-diagonal terms involve
coupling to the e↓g sub-band; such process are inelastic (the manganese perovskites are ‘strong’
ferromagnets) and are frozen out at low temperature. However with increasing temperature
some thermal occupation of the e↓g sub-band probably occurs, particularly asTc is approached
from below and the exchange splitting between spin-up (with resistivityρ↑) and spin-down
(ρ↓) sub-bands collapses. Furthermore, close toTc an expansion of these sub-band resistivities
in terms of the exchange fieldHex leads to [32]

ρ↑ρ↓ ' ρ(0)± sHex . . . (8)

wheres is the derivative of the sub-band resistivity with respect to the exchange field, and the
profile of both sub-bands has been taken to be similarcloseto Tc. With s being determined
primarily by the slope of the corresponding density of states near the Fermi energyEF ,
(dN/dE)EF ,

1ρ

ρ
∼ (λ/1CF )

2(dN/dE)2EFH
2
ex

ρ↑ρ↓ + ρ↑↓(ρ↑ + ρ↓)
(9)

in which ρ↑↓ represents spin-flip scattering between the two sub-bands. Using collective
electron (band) theory in which the thermal average of the magnetization〈M〉T is proportional
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Figure 14. As in figure 13 for temperatures of 220 and 330 K.

to (Tc − T )1/2, then in the mean field approximation in whichHex ∝ 〈M〉T , one obtains

1ρ

ρ
∝ (λ/1CF )

2(dN/dE)EF (Tc − T )
ρ↑ρ↓ + ρ↑↓(ρ↑ + ρ↓)

. (10)

Such an expression can reproduce the essentially linear decrease in the resistive anisotropy
betweenTc and about 100 K, provided the spin-flip and sub-band resistivities display a weak
temperature dependence in this region; this is, however, an unlikely scenario within currently
accepted pictures of the conduction process in the manganese perovskites. Furthermore, while
the abrupt decrease exhibited by the SRA below 50 K could be modelled, for example, by
some particularly sharp feature in the density of states, such arguments—along with those
given above—are obviously qualitative, and a realistic comparison between experiment and
the predictions of this model would necessitate incorporating realistic band structure details
into the several components of equation (10) [32].

By contrast localized models reproduce the linear temperature dependence of the resistive
anisotropy immediately belowTc more directly. Briefly, in this model the polarizing field
aligns the spin dipole moment (ES) which, through spin–orbit coupling, in turn preferentially
orients the orbital component (EL). WithL 6= 0, the attendant non-spherical charge distribution
results in aslightly different (charge) scattering cross-section being experienced by itinerant
electrons which constitute the current as the orientation between this current and the field
are changed. The analysis is effected by performing a multipole moment expansion of this
asphericalchargedistribution, from which the asymmetry, in lowest order, results from electric
quadrupole (D) scattering. The resulting anisotropy ratio is given by [29]

1ρ

ρ0
'
(
D

V

)[
〈S2
Z〉 −

S(S + 1)

3

]
(11)
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Figure 15. The temperature dependence of the estimated SRA (1ρ/ρ0 (%), see text). The solid
line is a theoretical model prediction discussed in the text.

in whichV (�D) characterizes the residual/zero-field resistivity and is usually attributed to
deviations in the lattice potential from periodicity in substituted systems. Conduction band
details are effectively eliminated by taking this ratio, with the quadrupole term displaying
the expected (3 cos2 θ − 1) angular variation associated with axial symmetry about the field
direction [27].

The solid line in figure 15 is a result of calculating〈S2
Z〉 from the S–K model discussed

previously [33] usingη = 2 and S = 2; however since the calculation is scaled by
the (unknown) ratio (D/V ) model parameters cannot be specified from a single data set.
Nevertheless this fit clearly provides a good representation of these data over the range 30 K
toTc ' 340 K using reasonable estimates forη andS. However the decrease in the magnitude
of the SRA below 30 K clearly cannot be reproduced. The near linear variation in the resistive
anisotropy belowTc is a feature reported in a variety of other amorphous [33] (i.e. high
resistivity) and crystalline systems [32], with amorphous Fe90Zr10 also displaying a decrease
in this ratio at low temperature. However, of more direct relevance is the result that the present
data donot display a maximum in the magnitude of the SRA just belowTc where a colossal
magnetoresistance is present in these systems. This result conflicts with recent reports on
LCMO films, although there the anisotropy was estimated from low field data and not the
extrapolation procedure utilized here.

Figure 16 summarizes the temperature dependence of the isotropic magnetoresistance
measured in an applied field at 1.5 T of the same bulk ceramic La0.67Pb0.33MnO3 as utilized
in all the measurements reported here. This magnetoresistance peaks in the vicinity ofTc
as expected, falls to a low value between 200 and 300 K, and then climbs monotonically
with decreasing temperature to 1.5 K. If the low field decrease in the magnetoresistance
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Figure 16. The temperature dependence of the isotropic magnetoresistance measured in an
applied field of 1.5 T. The dashed line indicates the effect of removing the low field contribution
from this ratio.

discussed previously, and attributed to grain boundary scattering, is subtracted from the data
in this figure—so that only intrinsic mechanisms are considered [25]—then these data remain
essentially constant below 200 K as the dashed line indicates. Since the SRA is also believed
to be an intrinsic property of these systems [25], indeed the extrapolation procedure used here
to estimate this quantity ensures that by removing the low field contribution, a comparison
between the data in figures 15 and 16 indicates little correlation between these two effects in
this Pb substituted system. An immediate conclusion that can be drawn from the latter is that
the scattering mechanisms that determine the anisotropic magnetoresistance and the (isotropic)
colossal magnetoresistance are not necessarily the same in all doped perovskites, a corollary
of which would be that the dopant series itself—not just the presence of Mn3+ ions—might
play some role. This possibility is currently being pursued.

4. Summary and conclusions

Field- and temperature-dependent magnetization and susceptibility measurements carried out
on a ceramic La0.67Pb0.33MnO3 sample have been analysed in an attempt to estimate the critical
exponents describing the paramagnetic to ferromagnetic transition atTc ' 340 K. Despite the
detailed nature of these measurements, the universality class of this system remains uncertain.
Data acquired closest to the critical point yieldγ = 1.39± 0.06, β = 0.41± 0.02 and
δ = 4.2± 0.15; however the presence of spin–spin coupling disorder and a significant regular
component in this response admit the possibility that the asymptotic exponents might be those
predicted by the three-dimensional Heisenberg model.
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The spontaneous resistive anisotropy (SRA) has also been measured as a function of
temperature, and, while the low temperature value for this quantity is in good agreement with
recent itinerant model calculations, the linear increase in the magnitude of the SRA between
Tc and about 30 K is well accounted for in a localized approach. Furthermore, the mechanisms
controlling the SRA and the ‘colossal magnetoresistance’ appear not to be correlated here.
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Fähnle M and Holey T 1987Phys. Status Solidib 141253
[22] Ghosh K, Lobb C J, Greene R L, Karabashev S G, Shulyatev D A, Arsenov A A and Mukovskii Y 1998Phys.

Rev. Lett.814740
[23] Wang Z, Kunkel H P and Williams G 1990J. Phys.: Condens. Matter2 4173

Kunkel H P, Wang Z and Williams G 1989J. Phys.: Condens. Matter1 3381
Kunkel H P, Wang Z and Williams G 1987J. Phys. F: Met. Phys.17L157

[24] Kumar P S A, Joy P A andDate S K 1998J. Phys.: Condens. Matter10L487
[25] Ziese M and Sena S P 1998J. Phys.: Condens. Matter102727
[26] Dorleijn J W F1976Philips Res. Rep.31287



8130 A Peles et al

[27] Campbell I A and Fert A 1982Ferromagnetic Materialsvol 3, ed E P Wohlfarth (Amsterdam: North-Holland)
p 747

[28] Mott N F 1936Proc. R. Soc.A 153699
Malozemoff A 1986Phys. Rev.B 341853

[29] Freiderich A and Fert A 1972Phys. Rev. Lett.331214
[30] Li X W, Gupta A, Gang X and Gong G Q 1997Appl. Phys. Lett.711124
[31] Campbell I A, Fert A and Jaoul O 1970J. Phys. C: Solid State Phys.3 S95
[32] Stampe P A, Kunkel H P, Wang Z and Williams G 1995Phys. Rev.B 35335

Stampe P A, Kunkel H P and Williams G 1994J. Phys.: Condens. Matter6 3045
[33] Stampe P A, Kunkel H P and Williams G 1993J. Phys.: Condens. Matter5 L625


